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With smartwatches already so seamlessly integrated in
our lives , can we use this piece of technology to detect

a life-altering disease early on?



Parkinsons Disease

e A progressive neurodegenerative disorder

primarily affecting movement.

e The hallmark symptoms: bradykinesia (slowness
of movement), resting tremor, muscle rigidity, with

postural instability often developing in later stages.
e Cause: remains unknown, but both genetic and

environmental factors play roles.

Parkinson’s Disease: pathogenesis and clinical aspects. (2018). In Codon Publications eBooks. https.//doi.org/10.15586/codonpublications.parkinsonsdisease.2018



Current Diagnosis Methods

e Clinical Examination & Medical History — Neurologists assess symptoms like tremors, rigidity,
and bradykinesia using criteria like MDS Clinical Diagnostic Criteria.

e Imaging Techniques — DaTscan (SPECT), MRI, and PET scans help differentiate PD from

other movement disorders.

e Levodopa Challenge Test — Improvement in symptoms after taking Levodopa suggests

Parkinson’s.

e Motor & Non-Motor Assessments — Includes UPDRS scale, gait analysis, handwriting tests,

and olfactory tests (loss of smell).

Parkinson’s Disease: pathogenesis and clinical aspects. (2018). In Codon Publications eBooks. https.//doi.org/10.15586/codonpublications.parkinsonsdisease.2018



Limitations

e All methods right now are detecting via clinical advancements, and more medically induced

methods

o Limited Accessibility: Techniques like DaTscan, MRI, and PET are expensive, not

widely available, and impractical for routine screening.

o Late Diagnosis: Clinical symptoms often appear after significant brain degeneration,

delaying early intervention.

o Lack of Continuous Monitoring: Traditional methods miss daily symptom fluctuations

and early subtle changes, especially in non-motor symptoms.

Parkinson’s Disease: pathogenesis and clinical aspects. (2018). In Codon Publications eBooks. https.//doi.org/10.15586/codonpublications.parkinsonsdisease.2018



Literature Review



American Academy Of Neurology

e Diagnostic Accuracy: An accuracy rate of 77% indicates that approximately one in
four PD diagnoses may be incorrect.

e The study highlights that neurologists often rely heavily on clinical skills due to limited
diagnostic tools in movement disorders. This reliance can contribute to diagnostic
inaccuracies.

e The lack of improvement in diagnostic accuracy over two decades suggests that
advancements in diagnostic methodologies or technologies have been minimal,

pointing to a need for better diagnostic approaches.



Challenges in the diagnosis of Parkinson’s disease

Eduardo Tolosa*, Alicia Garrido, Sonja W Scholz, Werner Poewe*

Hospital Clinic of Barcelona, University of Barcelona

e Despite numerous advancements, early-stage Parkinson’s
remains difficult to diagnose due to symptom overlap with other

neurodegenerative disorders.

 While imaging (e.g., PET, DaTscan) and biomarkers are

promising, they lack universal accessibility and

standardization, making them impractical for widespread use.

Lancet Neurol 2021; 20: 385-97
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« Computational Expensive:
High due to multi-source data processing, feature extraction, deep learning complexity, and cross-
validation for distinguishing similar disorders.

e Accuracy:
The model achieved 91.16% accuracy for PD vs. healthy controls and 72.42% for PD vs.

differential diagnoses, highlighting challenges in distinguishing similar disorders.

 Deployment:
The current model is unsuitable for deployment on smartwatches due to its high computational
cost.



DrawbackKs of the current methodology

1. Feature Selection Methodology
e Features are selected manually
e Then this limited set is fed into deep learning models.

e Causes the loss of potentially important information due to hand-picked features as
model extracts from less data .

2. High Computation Cost
e Tests multiple models on different feature sets and reports the best performing model.
e Unnecessarily heavy as all models need to be simultaneously run.



Probiem Statement

Can we develop a machine learning model for the
early prediction of Parkinson’s disease using
movement sensor data and self-reported
questionnaire responses?
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Varghese, J., Brenner, A., Fujarski, M., Van Alen, C. M., Plagwitz, L., & Warnecke, T. (2024). Machine Learning in the Parkinson’s disease smartwatch (PADS) dataset. Npj Parkinson S Disease, 10(1). https.//doi.org/10.1038/s41531-023-00625-7



This data is sourced via :

e 3-year cross-sectional study at a large tertiary care
hospital

A multi-modal smartphone app integrated
electronic questionnaires and smartwatch
measures during an interactive assessment designed
by neurologists to provoke subtle changes in
movement pathologies.

e 5000 clinical assessment steps from 504 participants,

including PD, DD, and healthy controls (HC).

Varghese, J., Brenner, A., Fujarski, M., Van Alen, C. M., Plagwitz, L., & Warnecke, T. (2024). Machine Learning in the Parkinson’s disease smartwatch (PADS) dataset. Npj Parkinson S Disease, 10(1). https.//doi.org/10.1038/s41531-023-00625-7



Preprocessing






Integrating Multiple Datasets



Data Spread



Smartwatch Data (Time Series Data)
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Questionnaire




ML Methodology




Motor Model - What Didn’t Work

Attempted: Omni-Scale CNN

Reason:

e Inspired by XceptionTime; expected good performance on
multimodal signals.

e Why Omni-Scale: Computationally light, good for small devices
(smartwatches).

What we tried:

e Hyperparameter tuning (grid search on learning rate, neurons,
depthwise separable conv).

Outcome:
e Accuracy plateaued early (~mid 60s%).

e Adding layers didn’t help which meant convolutions not learning
useful features.

Learning:
e Non-Convolutional models may work better for time-series motor
features.



Questionnaire Model - What Worked

Baseline: Feedforward Neural Network

Achieved:
e Training accuracy: 84%
e Test accuracy: 80%
e No signs of overfitting.

Simple model worked well — stuck with it for

fusion.



Moving to a Fusion Model

Fusion
Concatenated raw features — fed to basic random forest.

Result:
e Accuracy: late 60s

Improvement:

Feature Engineering
Extracted features from motor data:

Statistical: Mean, std, min, max, RMS, skewness, kurtosis, FFT energy
Wavelet: Mean, std, energy across levels (PyWavelets)

Cross-channel: Correlation and phase differences
Combined with questionnaire responses.



Feature Extraction Approach

Architecture
o ParkinsonClassifier (MLP): Motor features

e QuestionnaireNN (MLP): Questionnaire

e FusionModel: Concatenates both
PD vs HC

Performance:
e PD vs HC: 81.69%

e PDvs DD:74.36%
e Close to the results in the literature review
using only simple, interpretable models

PD vs DD



Final Fusion Model Architecture

Model Architecture:
e |nput: Extracted motor features
e 3 hidden layers — BatchNorm + RelLU + Dropout
e QuestionnaireNN (Questionnaire MLP):

Input: Scaled questionnaire features
e 2 hidden layers — RelLU + Dropout

FusionModel:
e Concatenates both branches
e Final FC layers — Sigmoid output

Training Setup:
e Early stopping
e 5-fold stratified cross-validation
e Train/test split = 80/20

Results:
e Accuracy (PD vs DD): ~98.72%
e Accuracy (PD vs HC): ~100%
e Robust generalization across validation & test splits

PD vs DD

PD vs HC



PD vs DD

PD vs HC

Input Test folds Balanced accuracy F1 Precision Recall

complete 72.42% (12.33%) 60.45% (16.7%) 54.92% (15.05%) 67.71% (19.45%)
Smartwatch + Questionnaire

matched 69.56% (17.34%) 67.93% (19.84%) 70.36% (19.85%) 65.71% (19.93%)

PD vs DD

complete 91.16% (4.92%) 94.62% (2.21%) 96.98% (2.49%) 92.4% (2.64%)
Smartwatch + Questionnaire

matched 89.25% (5.65%) 89.77% (5.24%) 89.79% (8.99%) 90.1% (3.13%)

PD vs HC



Pipeline




PD vs. Rl Classification

e Motor Branch (ParkinsonClassifier)
o Fully connected layers (256 — 128 — 64)
o |nputs: Extracted features from motor data
o Statistical
o Wavelet
o Cross-channel correlation
o Feature selection via Random Forest

e Questionnaire Branch (QuestionnaireNN)
o Two-layer feedforward network (128 — 64)
o Inputs: Cleaned & scaled questionnaire data

e Fusion Head (FusionModel)
o Concatenation of both branches
o Final classifier: 64 — 1 with Sigmoid activation
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Outcomes

Added depth seperable convolution layers-
e Accuracy dropped by ~10%
e Validated our hypothesis that linearly separable models work better
for our features.

Extracted features + Neural Networks worked best
Smaller model (around 2 MB size)
Better suited for edge deployment (e.g., on wearables)
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1. Limited Labeled Data
o Small number of patients with both motor and questionnaire data.
e Difficult to scale without significantly more labeled, multimodal samples.

2. Class Imbalance
e Parkinson’s datasets are often imbalanced, especially with rare atypical subtypes.
e Scaling up requires robust class-weighting or synthetic sample generation (e.g., SMOTE).

3. Infrastructure & Compute
e Large-scale feature extraction + training demands high memory and GPU.
e Scaling may need batch processing pipelines, cloud GPU infrastructure.
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